内存管理 · 2015-03-11 0

【Linux内存管理】伙伴管理算法(5)

前面已经分析了伙伴管理算法的释放实现,接着分析一下伙伴管理算法的内存申请实现。

伙伴管理算法内存申请和释放的入口一样,其实并没有很清楚的界限表示这个函数是入口,而那个不是,所以例行从稍微偏上一点的地方作为入口分析。于是选择了alloc_pages()宏定义作为分析切入口:

【file:/include/linux/gfp.h】
#define alloc_pages(gfp_mask, order) \
        alloc_pages_node(numa_node_id(), gfp_mask, order)

 

而alloc_pages_node()的实现:

【file:/include/linux/gfp.h】
static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
                        unsigned int order)
{
    /* Unknown node is current node */
    if (nid < 0)
        nid = numa_node_id();

    return __alloc_pages(gfp_mask, order, node_zonelist(nid, gfp_mask));
}

 

没有明确内存申请的node节点时,则默认会选择当前的node节点作为申请节点。往下则接着调用__alloc_pages()来申请具体内存,其中入参node_zonelist()是用于获取node节点的zone管理区列表。接着往下看一下__alloc_pages()的实现:

【file:/include/linux/gfp.h】
static inline struct page *
__alloc_pages(gfp_t gfp_mask, unsigned int order,
        struct zonelist *zonelist)
{
    return __alloc_pages_nodemask(gfp_mask, order, zonelist, NULL);
}

 

实则是封装了__alloc_pages_nodemask()。而__alloc_pages_nodemask()的实现:

【file:/mm/page_alloc.c】
/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
            struct zonelist *zonelist, nodemask_t *nodemask)
{
    enum zone_type high_zoneidx = gfp_zone(gfp_mask);
    struct zone *preferred_zone;
    struct page *page = NULL;
    int migratetype = allocflags_to_migratetype(gfp_mask);
    unsigned int cpuset_mems_cookie;
    int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
    struct mem_cgroup *memcg = NULL;

    gfp_mask &= gfp_allowed_mask;

    lockdep_trace_alloc(gfp_mask);

    might_sleep_if(gfp_mask & __GFP_WAIT);

    if (should_fail_alloc_page(gfp_mask, order))
        return NULL;

    /*
     * Check the zones suitable for the gfp_mask contain at least one
     * valid zone. It's possible to have an empty zonelist as a result
     * of GFP_THISNODE and a memoryless node
     */
    if (unlikely(!zonelist->_zonerefs->zone))
        return NULL;

    /*
     * Will only have any effect when __GFP_KMEMCG is set.  This is
     * verified in the (always inline) callee
     */
    if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
        return NULL;

retry_cpuset:
    cpuset_mems_cookie = get_mems_allowed();

    /* The preferred zone is used for statistics later */
    first_zones_zonelist(zonelist, high_zoneidx,
                nodemask ? : &cpuset_current_mems_allowed,
                &preferred_zone);
    if (!preferred_zone)
        goto out;

#ifdef CONFIG_CMA
    if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
        alloc_flags |= ALLOC_CMA;
#endif
retry:
    /* First allocation attempt */
    page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
            zonelist, high_zoneidx, alloc_flags,
            preferred_zone, migratetype);
    if (unlikely(!page)) {
        /*
         * The first pass makes sure allocations are spread
         * fairly within the local node.  However, the local
         * node might have free pages left after the fairness
         * batches are exhausted, and remote zones haven't
         * even been considered yet.  Try once more without
         * fairness, and include remote zones now, before
         * entering the slowpath and waking kswapd: prefer
         * spilling to a remote zone over swapping locally.
         */
        if (alloc_flags & ALLOC_FAIR) {
            reset_alloc_batches(zonelist, high_zoneidx,
                        preferred_zone);
            alloc_flags &= ~ALLOC_FAIR;
            goto retry;
        }
        /*
         * Runtime PM, block IO and its error handling path
         * can deadlock because I/O on the device might not
         * complete.
         */
        gfp_mask = memalloc_noio_flags(gfp_mask);
        page = __alloc_pages_slowpath(gfp_mask, order,
                zonelist, high_zoneidx, nodemask,
                preferred_zone, migratetype);
    }

    trace_mm_page_alloc(page, order, gfp_mask, migratetype);

out:
    /*
     * When updating a task's mems_allowed, it is possible to race with
     * parallel threads in such a way that an allocation can fail while
     * the mask is being updated. If a page allocation is about to fail,
     * check if the cpuset changed during allocation and if so, retry.
     */
    if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
        goto retry_cpuset;

    memcg_kmem_commit_charge(page, memcg, order);

    return page;
}

 

这就是伙伴管理算法的核心了,于是兜兜转转,终于到了。

其中lockdep_trace_alloc()需要CONFIG_TRACE_IRQFLAGS和CONFIG_PROVE_LOCKING同时定义的时候,才起作用,否则为空函数;如果申请页面传入的gfp_mask掩码携带__GFP_WAIT标识,表示允许页面申请时休眠,则会进入might_sleep_if()检查是否需要休眠等待以及重新调度;由于未设置CONFIG_FAIL_PAGE_ALLOC,则should_fail_alloc_page()恒定返回false;if (unlikely(!zonelist->_zonerefs->zone))用于检查当前申请页面的内存管理区zone是否为空;memcg_kmem_newpage_charge()和memcg_kmem_commit_charge()与控制组群Cgroup相关;get_mems_allowed()封装了read_seqcount_begin()用于获得当前对被顺序计数保护的共享资源进行读访问的顺序号,用于避免并发的情况下引起的失败,与其组合的操作函数是put_mems_allowed();first_zones_zonelist()则是用于根据nodemask,找到合适的不大于high_zoneidx的内存管理区preferred_zone;另外allocflags_to_migratetype()是用于转换GFP标识为正确的迁移类型。

最后__alloc_pages_nodemask()分配内存页面的关键函数是:get_page_from_freelist()和__alloc_pages_slowpath(),其中get_page_from_freelist()最先用于尝试页面分配,如果分配失败的情况下,则会进一步调用__alloc_pages_slowpath()。__alloc_pages_slowpath()是用于慢速页面分配,允许等待和内存回收。由于__alloc_pages_slowpath()涉及其他内存管理机制,这里暂不深入分析。

故最后分析一下get_page_from_freelist()的实现:

【file:/mm/page_alloc.c】
/*
 * get_page_from_freelist goes through the zonelist trying to allocate
 * a page.
 */
static struct page *
get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
        struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
        struct zone *preferred_zone, int migratetype)
{
    struct zoneref *z;
    struct page *page = NULL;
    int classzone_idx;
    struct zone *zone;
    nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
    int zlc_active = 0;		/* set if using zonelist_cache */
    int did_zlc_setup = 0;		/* just call zlc_setup() one time */

    classzone_idx = zone_idx(preferred_zone);
zonelist_scan:
    /*
     * Scan zonelist, looking for a zone with enough free.
     * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
     */
    for_each_zone_zonelist_nodemask(zone, z, zonelist,
                        high_zoneidx, nodemask) {
        unsigned long mark;

        if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
            !zlc_zone_worth_trying(zonelist, z, allowednodes))
                continue;
        if ((alloc_flags & ALLOC_CPUSET) &&
            !cpuset_zone_allowed_softwall(zone, gfp_mask))
                continue;
        BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
        if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
            goto try_this_zone;
        /*
         * Distribute pages in proportion to the individual
         * zone size to ensure fair page aging.  The zone a
         * page was allocated in should have no effect on the
         * time the page has in memory before being reclaimed.
         */
        if (alloc_flags & ALLOC_FAIR) {
            if (!zone_local(preferred_zone, zone))
                continue;
            if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
                continue;
        }
        /*
         * When allocating a page cache page for writing, we
         * want to get it from a zone that is within its dirty
         * limit, such that no single zone holds more than its
         * proportional share of globally allowed dirty pages.
         * The dirty limits take into account the zone's
         * lowmem reserves and high watermark so that kswapd
         * should be able to balance it without having to
         * write pages from its LRU list.
         *
         * This may look like it could increase pressure on
         * lower zones by failing allocations in higher zones
         * before they are full.  But the pages that do spill
         * over are limited as the lower zones are protected
         * by this very same mechanism.  It should not become
         * a practical burden to them.
         *
         * XXX: For now, allow allocations to potentially
         * exceed the per-zone dirty limit in the slowpath
         * (ALLOC_WMARK_LOW unset) before going into reclaim,
         * which is important when on a NUMA setup the allowed
         * zones are together not big enough to reach the
         * global limit.  The proper fix for these situations
         * will require awareness of zones in the
         * dirty-throttling and the flusher threads.
         */
        if ((alloc_flags & ALLOC_WMARK_LOW) &&
            (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
            goto this_zone_full;

        mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
        if (!zone_watermark_ok(zone, order, mark,
                       classzone_idx, alloc_flags)) {
            int ret;

            if (IS_ENABLED(CONFIG_NUMA) &&
                    !did_zlc_setup && nr_online_nodes > 1) {
                /*
                 * we do zlc_setup if there are multiple nodes
                 * and before considering the first zone allowed
                 * by the cpuset.
                 */
                allowednodes = zlc_setup(zonelist, alloc_flags);
                zlc_active = 1;
                did_zlc_setup = 1;
            }

            if (zone_reclaim_mode == 0 ||
                !zone_allows_reclaim(preferred_zone, zone))
                goto this_zone_full;

            /*
             * As we may have just activated ZLC, check if the first
             * eligible zone has failed zone_reclaim recently.
             */
            if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
                !zlc_zone_worth_trying(zonelist, z, allowednodes))
                continue;

            ret = zone_reclaim(zone, gfp_mask, order);
            switch (ret) {
            case ZONE_RECLAIM_NOSCAN:
                /* did not scan */
                continue;
            case ZONE_RECLAIM_FULL:
                /* scanned but unreclaimable */
                continue;
            default:
                /* did we reclaim enough */
                if (zone_watermark_ok(zone, order, mark,
                        classzone_idx, alloc_flags))
                    goto try_this_zone;

                /*
                 * Failed to reclaim enough to meet watermark.
                 * Only mark the zone full if checking the min
                 * watermark or if we failed to reclaim just
                 * 1<<order pages or else the page allocator
                 * fastpath will prematurely mark zones full
                 * when the watermark is between the low and
                 * min watermarks.
                 */
                if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
                    ret == ZONE_RECLAIM_SOME)
                    goto this_zone_full;

                continue;
            }
        }

try_this_zone:
        page = buffered_rmqueue(preferred_zone, zone, order,
                        gfp_mask, migratetype);
        if (page)
            break;
this_zone_full:
        if (IS_ENABLED(CONFIG_NUMA))
            zlc_mark_zone_full(zonelist, z);
    }

    if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
        /* Disable zlc cache for second zonelist scan */
        zlc_active = 0;
        goto zonelist_scan;
    }

    if (page)
        /*
         * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
         * necessary to allocate the page. The expectation is
         * that the caller is taking steps that will free more
         * memory. The caller should avoid the page being used
         * for !PFMEMALLOC purposes.
         */
        page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);

    return page;
}

 

该函数主要是遍历各个内存管理区列表zonelist以尝试页面申请。其中for_each_zone_zonelist_nodemask()则是用于遍历zonelist的,每个内存管理区尝试申请前,都将检查内存管理区是否有可分配的内存空间、根据alloc_flags判断当前CPU是否允许在该内存管理区zone中申请以及做watermark水印检查以判断zone中的内存是否足够等。这部分的功能实现将在后面详细分析,当前主要聚焦在伙伴管理算法的实现。

不难找到真正用于分配内存页面的函数为buffered_rmqueue(),其实现:

【file:/mm/page_alloc.c】
/*
 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
 * or two.
 */
static inline
struct page *buffered_rmqueue(struct zone *preferred_zone,
            struct zone *zone, int order, gfp_t gfp_flags,
            int migratetype)
{
    unsigned long flags;
    struct page *page;
    int cold = !!(gfp_flags & __GFP_COLD);

again:
    if (likely(order == 0)) {
        struct per_cpu_pages *pcp;
        struct list_head *list;

        local_irq_save(flags);
        pcp = &this_cpu_ptr(zone->pageset)->pcp;
        list = &pcp->lists[migratetype];
        if (list_empty(list)) {
            pcp->count += rmqueue_bulk(zone, 0,
                    pcp->batch, list,
                    migratetype, cold);
            if (unlikely(list_empty(list)))
                goto failed;
        }

        if (cold)
            page = list_entry(list->prev, struct page, lru);
        else
            page = list_entry(list->next, struct page, lru);

        list_del(&page->lru);
        pcp->count--;
    } else {
        if (unlikely(gfp_flags & __GFP_NOFAIL)) {
            /*
             * __GFP_NOFAIL is not to be used in new code.
             *
             * All __GFP_NOFAIL callers should be fixed so that they
             * properly detect and handle allocation failures.
             *
             * We most definitely don't want callers attempting to
             * allocate greater than order-1 page units with
             * __GFP_NOFAIL.
             */
            WARN_ON_ONCE(order > 1);
        }
        spin_lock_irqsave(&zone->lock, flags);
        page = __rmqueue(zone, order, migratetype);
        spin_unlock(&zone->lock);
        if (!page)
            goto failed;
        __mod_zone_freepage_state(zone, -(1 << order),
                      get_pageblock_migratetype(page));
    }

    __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));

    __count_zone_vm_events(PGALLOC, zone, 1 << order);
    zone_statistics(preferred_zone, zone, gfp_flags);
    local_irq_restore(flags);

    VM_BUG_ON_PAGE(bad_range(zone, page), page);
    if (prep_new_page(page, order, gfp_flags))
        goto again;
    return page;

failed:
    local_irq_restore(flags);
    return NULL;
}

 

if (likely(order == 0))如果申请的内存页面处于伙伴管理算法中的0阶,即只申请一个内存页面时,则首先尝试从冷热页中申请,若申请失败则继而调用rmqueue_bulk()去申请页面至冷热页管理列表中,继而再从冷热页列表中获取;如果申请多个页面则会通过__rmqueue()直接从伙伴管理中申请。

__rmqueue()的实现:

【file:/mm/page_alloc.c】
/*
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
static struct page *__rmqueue(struct zone *zone, unsigned int order,
                        int migratetype)
{
    struct page *page;

retry_reserve:
    page = __rmqueue_smallest(zone, order, migratetype);

    if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
        page = __rmqueue_fallback(zone, order, migratetype);

        /*
         * Use MIGRATE_RESERVE rather than fail an allocation. goto
         * is used because __rmqueue_smallest is an inline function
         * and we want just one call site
         */
        if (!page) {
            migratetype = MIGRATE_RESERVE;
            goto retry_reserve;
        }
    }

    trace_mm_page_alloc_zone_locked(page, order, migratetype);
    return page;
}

 

该函数里面有两个关键函数:__rmqueue_smallest()和__rmqueue_fallback()。

先行分析一下__rmqueue_fallback():

【file:/mm/page_alloc.c】
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
static inline
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
                        int migratetype)
{
    unsigned int current_order;
    struct free_area *area;
    struct page *page;

    /* Find a page of the appropriate size in the preferred list */
    for (current_order = order; current_order < MAX_ORDER; ++current_order) {
        area = &(zone->free_area[current_order]);
        if (list_empty(&area->free_list[migratetype]))
            continue;

        page = list_entry(area->free_list[migratetype].next,
                            struct page, lru);
        list_del(&page->lru);
        rmv_page_order(page);
        area->nr_free--;
        expand(zone, page, order, current_order, area, migratetype);
        return page;
    }

    return NULL;
}

 

该函数实现了分配算法的核心功能,首先for()循环其由指定的伙伴管理算法链表order阶开始,如果该阶的链表不为空,则直接通过list_del()从该链表中获取空闲页面以满足申请需要;如果该阶的链表为空,则往更高一阶的链表查找,直到找到链表不为空的一阶,至于若找到了最高阶仍为空链表,则申请失败;否则将在找到链表不为空的一阶后,将空闲页面块通过list_del()从链表中摘除出来,然后通过expand()将其对等拆分开,并将拆分出来的一半空闲部分挂接至低一阶的链表中,直到拆分至恰好满足申请需要的order阶,最后将得到的满足要求的页面返回回去。至此,页面已经分配到了。

至于__rmqueue_fallback():

【file:/mm/page_alloc.c】
/* Remove an element from the buddy allocator from the fallback list */
static inline struct page *
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
{
    struct free_area *area;
    int current_order;
    struct page *page;
    int migratetype, new_type, i;

    /* Find the largest possible block of pages in the other list */
    for (current_order = MAX_ORDER-1; current_order >= order;
                        --current_order) {
        for (i = 0;; i++) {
            migratetype = fallbacks[start_migratetype][i];

            /* MIGRATE_RESERVE handled later if necessary */
            if (migratetype == MIGRATE_RESERVE)
                break;

            area = &(zone->free_area[current_order]);
            if (list_empty(&area->free_list[migratetype]))
                continue;

            page = list_entry(area->free_list[migratetype].next,
                    struct page, lru);
            area->nr_free--;

            new_type = try_to_steal_freepages(zone, page,
                              start_migratetype,
                              migratetype);

            /* Remove the page from the freelists */
            list_del(&page->lru);
            rmv_page_order(page);

            expand(zone, page, order, current_order, area,
                   new_type);

            trace_mm_page_alloc_extfrag(page, order, current_order,
                start_migratetype, migratetype, new_type);

            return page;
        }
    }

    return NULL;
}

 

其主要是向其他迁移类型中获取内存。较正常的伙伴算法不同,其向迁移类型的内存申请内存页面时,是从最高阶开始查找的,主要是从大块内存中申请可以避免更少的碎片。如果尝试完所有的手段仍无法获得内存页面,则会从MIGRATE_RESERVE列表中获取。这部分暂不深入,后面再详细分析。

毕了,至此伙伴管理算法的分配部分暂时分析完毕。